Dynamics of the Parkinsonian striatal microcircuit: entrainment into a dominant network state.
نویسندگان
چکیده
Neuronal synchronization in basal ganglia circuits plays a key role in the encoding of movement, procedural memory storage and habit formation. Striatal dopamine (DA) depletion during Parkinsonism causes abnormal synchronization in corticobasal ganglia loops resulting in motor dysfunction. However, the dynamics of the striatal microcircuit underlying abnormal synchronization in Parkinsonism is poorly understood. Here we used targeted whole-cell recordings, calcium imaging allowing the recording from dozens of cells simultaneously and analytical approaches, to describe the striking alterations in network dynamics that the striatal microcircuit undergoes following DA depletion in a rat model of Parkinson disease (PD): In addition to a significant enhancement of basal neuronal activity frequent periods of spontaneous synchronization were observed. Multidimensional reduction techniques of vectorized network dynamics revealed that increased synchronization resulted from a dominant network state that absorbed most spontaneously active cells. Abnormal synchronous activity can be virtually abolished by glutamatergic antagonists, while blockade of GABAergic transmission facilitates the engagement of striatal cell assemblies in the dominant state. Finally, a dopaminergic receptor agonist was capable of uncoupling neurons from the dominant state. Abnormal synchronization and "locking" into a dominant state may represent the basic neuronal mechanism that underlies movement disorders at the microcircuit level.
منابع مشابه
Global actions of nicotine on the striatal microcircuit
THE QUESTION TO SOLVE IN THE PRESENT WORK IS what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be use...
متن کاملStriatal Cell Types and Their Interaction
The neostriatum is strategically located in the forebrain and receives inputs from all cortical areas. The complexity of the corticostriatal pathways suggests that striatal neurons are in a unique position to process convergent inputs from cortex and through basal ganglia output nuclei to control subcortical nuclei and/or contribute to cortical dynamics via the thalamus. The most abundant neuro...
متن کاملRapid Target-Specific Remodeling of Fast-Spiking Inhibitory Circuits after Loss of Dopamine
In Parkinson's disease (PD), dopamine depletion alters neuronal activity in the direct and indirect pathways and leads to increased synchrony in the basal ganglia network. However, the origins of these changes remain elusive. Because GABAergic interneurons regulate activity of projection neurons and promote neuronal synchrony, we recorded from pairs of striatal fast-spiking (FS) interneurons an...
متن کاملThe balance of striatal feedback transmission is disrupted in a model of parkinsonism.
Inhibitory connections among striatal projection neurons (SPNs) called "feedback inhibition," have been proposed to endow the striatal microcircuit with computational capabilities, such as motor sequence selection, filtering, and the emergence of alternating network states. These properties are disrupted in models of Parkinsonism. However, the impact of feedback inhibition in the striatal netwo...
متن کاملActivity Dynamics and Signal Representation in a Striatal Network Model with Distance-Dependent Connectivity
The striatum is the main input nucleus of the basal ganglia. Characterizing striatal activity dynamics is crucial to understanding mechanisms underlying action selection, initiation, and execution. Here, we studied the effects of spatial network connectivity on the spatiotemporal structure of striatal activity. We show that a striatal network with nonmonotonically changing distance-dependent co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 34 شماره
صفحات -
تاریخ انتشار 2010